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ABSTRACT

In this paper, we study additive regression modétls spline smoothing, and determining the numlwérknots

and their locations by using some statistical déte
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INTRODUCTION

Regression analysis is a statistical tool thaizeatdl the relation between two or more quantitatiaeables so that
one variable can be predicted from the other, bemst For example, if one knows the relation betwadvertising

expenditures and sales, one can predict salegbgsson analysis once the level of advertisingeagiures has been set.
Linear regression is a statistical modeling techeithat relates the change in one variable to atiéables( see[12]).

A simple linear regression line has an equatiothefformy = g, + B.x + ¢, wherex is the explanatory variable

and y is the dependent variable. The slop of theifs;, S, is the intercept, anglisan error term
( see[14]).

In many applications in different fields, we needise one of a collection of models for correlatath structures,
for example, multivariate observations clusterethdeepeated measurements, longitudinal data azmihBp data. Often
random effects are used to describe the correlatiarcture in this type of this data. Mixed modaie an extension of

regression models that allow for the incorporattbmandom effects. However, they also turn outéoctosely related to
smoothing ( see [16]).

In this paper we study Additive models with splsmoothing, and we present the definition, propsrtiethe

statistical models, estimation method. Also we @néshe number of knots and their locations.
NONPARAMETRIC REGRESSION

Given data of the forfx; ,y, ), (x3,¥2), -, (x,, ¥, ). Let themodel( see[5]):

y=gx) +e 1)

Where the noise termsatisfies the usual conditions assumed for sinipdar regression, we seek an estimate of
the regression functiop(x) satisfying the model (1). There are several apgres to this problem, we will describe

methods involving splines.
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SPLINES

The discovery that piecewise polynomials or splicesld be used in place of polynomials occurrethaearly
twentieth century. Splines have since become ortbeomost popular ways of approximating nonlinearcfions. Splines
are essentially defined as piecewise. Let k beraaynumber, then can definep%degree truncated power function as(
see[2,3,4,7,8,9,10]):

(x- k) = (x= k)Plixsiy () (@)

As a function ofx, this function takes on the value 0 to the lefkpfind it takes on the valdec - k)P to the

right of k. The numbek is called a knot.

The above truncated power function is a basic e¥amipa spline. It is a member of the set of basigtions for

the space of splines.

Let us consider a generpl® degree splinewith a single knot at k. [Rtx) denote an arbitrary* degree

polynomial.
P(x) = By + Prx + Box? + .. + BpxP
Then:
SG) = P(x) + Bpea(x - k)Y @)
Takes on the valuB(x) for anyx < k, and it takes on the value
P(x) + Bp+1(x - k)Pforanyx > k

Thus, restricted to each region, the function jd"adegree polynomial. As a whole, this function is*4 degree

piecewise polynomial; there are two pieces.

Note that require + 2 coefficients to specify this piecewise polynomighis is a result of the addition of the
truncated power function specified by the knokain general, we may add truncated power function specified at

ki, ko, ..., kg, each multiplied by different coefficients. Thuswid result inp + K + 1 degree of freedom.

An important property of splines is their smoottmeRolynomials are very smooth, possessing allvaives
everywhere. Splines possess all derivatives onppatts which are not knots. The number of derxestiat a knot depends

on the degree of the spline, consider the splinpyve can show théi{x) is continuous ak,whenp > 0 by noting that:
Stk) = P(k)
Andlimy . Bps1(x - k)L = 0
So thatlim,_,;, S(x) = P(k)
Can argue similarly for the firgt — 1 derivatives
SOwk) = POk), j=1,2,...,p-1

And
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limy i Bpsr P(P-1) . (p=j + 1) (x-k)P~7 = 0

So thatlim,_,, SY(x) = PY (k) Thep'" derivative behaves differently:
SO = p'B,

Andlim,_,, S® (x) = p!Bp + P! Pp+1

So usually there is a discontinuity in th& derivative. Thug®* degree splines are usually said to have no more

than(p- 1) continuous derivatives.

The discussion below (3) indicates that can reptteany piecewise polynomials of deggeén the following

way:
Sx) = Bo + Prx + o + BpxP + B (x- k)Y + .+ Bp+x(x - ki) (4)
Any piecewise polynomial can be expressed as arlioembination of truncated power functions and/pomial
of degreep
(,80+,81x+...+,8pxp , x < ky
Bo+ Bix + .+ BpxP + Bpi(x - ky)?P , ki <x< ky
SO) =9 Bot Brx + ot BoxXP + Bpya(x= k)P + Bpia(x- k)P, ky <x < ks

kﬁg-i- Brx + o+ BpxP + Bpri(x- k)P + o+ Bpr(x- k)P, x>kg
In the other words,
{1,x,x2%, . ,xP, (x - k)b, (x- k)b ., (x- k)R 3

Is a basis for the spacepdt degree splines possessing knotk,ak, , ..., kx. By adding a noise term to (4), we

can obtain a splines regression model relatingpomse
Y=Sx)+¢ (5)
To the predictox.
Penalized Splines
Let us consider the model (1) with linear splineéts ) as( see[1,8,9,10,15]):
S(x) = Bo + Prx + Xy Brj (x- k),
Then the ordinary least squares fit can be writtes: X g,

Wherel minimizes||Y — XB||?, with B = (Bo, By, P11, Paz » - Brg) " and with

xp (x-ky)y o (x-kg)s
X = 1 x; (xg-ky)y - (x2-kg)s
1 x, (xp-ki)y (xp - kq )+
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Unconstrained estimation 6f,, 8, , ..., f14l€ads to a wiggly fit. For judicious choice ©f a constraint of the

type:
X Bh<C

If we define the(q + 2) X (q + 2) matrix.

0 0 0 O 0

[O 0 0 O 0}
p=10010 0l _ 022 02><q]

lo 0 0 1 007 (042 Igng

The minimization problem can be writtenMg ||Y — XB||?

Subject to

pTDB<C

It can be shown, using a Lagrange multiplier argutibat this is equivalent to choosigfyto minimize:

lY — XBII> + 28" Dp (6)
For somé > 0. This has the solution

B =X"X+22D) X"y )

The termA?BTDgB is called a roughness penalty because it penafieshat are too rough, thus yielding a

smoother result. The amount of smoothing is colgddbyi( the smoothing parameter ).

When the value of the smoothing paramekgig very large the,, — 0 leads to the estimator is polynomials of

degreegg only, while if thel = 0 then leads to no exist roughness penalty.
Number and Position of Knots

If the number of knots too small, then the bias banlarge in estimator, and if the number too laitgis,

preferred, we can use all the observations as knots

Literature proposes several aapproaches to autbrkatit selection. Many of them are based on stepwis
regression ideas. Although most of theautomatic lsetection procedures proposed exhibit good pesdoce they are
each quite complicated and computationally intemsin penalized spline the number of kno#§ )X that usually works

well is:

K = min G number of unique x;, 35), (see[10,15,17]):

- . k+1\E . .
As the position of knots determine from t@ﬁ—z) sample quantile of the uniqugfork = 1,2, ... ,K.

Cross Validation (CV)

Let m(x, A) denote the regression estimate at a powith smoothing paramet&rOne of the most common
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measures for the goodness of fit of a regressiovedo a scatter plot is the residual sum of sqEERES)
RSS () = XL — 9)? (8)

Withy; = m(x;, A).However, sinc&SSis minimized at the interpollag$; = y;, i = 1,2, ... ,n),minimization of
this criterion will lead to the smooth that is ass to interpolation. For penalized spline thisresponds to a zero

smoothing parameter. Cross validation gets arolisdoroblem. The cross validationcriterion is( $e®4]):
V) =Xilyi — M (o, DI? 9

Wherefi_; denotes the regression estimator applied to the lulat with(x;, y;)deleted. Th&V choiceofl, A.yis

the one that minimiz&¥/ (1)overi = 0.
Generalized Cross Validation (GCV )

Efficient algorithms for computation @/ (1)were developed in the mid1980s.Before that timediiffgculties
surrounding computation of the cross-validatiortecion led to the proposal of a simplified versidrhis simplified

criterion is known a generalized cross-validation.

_n 3 {U-SD Y _ n ¥, (ri-m(xpA)® _ nRSS(A)
GCVA) = (er(1-s)? (tr (I-57)? T (tr (I- 5p))? (10)

WhereS, be the smoother matrix associated Wi#mds, satisfyY = S,Y( see[5,10,15]).
Mixed Models

Mixed models are an extension of regression mathelsallow for the incorporation of random effecdsmore
contemporary application of mixed models is thelysia of longitudinal data, clustered data repeatedsurements and

spatially correlated data.The general form of adinmixed model is given as follows( see[15]):
Yi = Xif +Xj1 Zijuwij + € (11)
u;;~N(0,G;), €~N(O,R))
Where the vectol; has lengthm;, X; andZ;; are, respectively, a; X p design matrix and &; X g; design

matrix of fixed and random effectgis ap-vector of fixed effects and;; are theg;-vectors of random effects. The

variance matrixG; is aq; X q; matrix andr; is am; X m; matrix.

We assume that the random effects;; i = 1,..,n; j = 1,..,7} and the set of error ternfs,, ..., €, } are

independent. In matrix notation,
Y=XB+Zu+e (12)

HereY = (13, ....,Y,)" haslengtiv =Y m;, X = (X7,..,X5)Tis aN x p design matrix of fixed effects, Z is
aN X q block diagonal design matrix of random effeqts; ¥7_, q; ,u = !, ...,ul)T is a g-vector of random effects,

R =diag(R,, ..., Ry) is aN x N matrix andG = diag(G,, ..., G,) is aq x q block diagonal matrix.

We now that treat estimationffprediction ofu, and estimation of the parametergziandR, one way to drive

an estimate of is to rewrite (12) as:
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Y=XB+¢", wheree* =Zu+¢

This is just a linear model with correlated ergince:

cov(e) =V =2GZT +R

For givenV, the estimator of is:

f=XTV1x)"1XTy-ty (13)

And is sometime referred to as generalized lingaages GLS. ForY having a general distribution (13) can be
shown to be the best linear unbiased estim@blE) for B. Alternatively, ifY is multivariate normal, then the right hand
said of (13) is both the maximum likelihood estiovafMLE) and the uniformly minimum variance unbiased eaton
(UMVUE).

The latter is the estimator that has the best(&si@lpossible variance of any unbiased estimat@ardéess of the

parameters values [15].

The random effects vector can be predicted via lbesdr prediction.
i =BLP(w) = GZTV-Y(Y — XB) (14)
Then theBLUP of (8, u) can also be written as:-
[/f] = (CTR™C + B)~*C"R"Y (15)
u
Where
— _ [0 0
€ =[x zland = [ G—l]
The fitted values are then:
BLUP(Y) = XB + Zii = C(CTR™'C + B)"'C"R"'Y = HY (16)
Where called Hat matrix or smoother matrix,

The Log — likelihood df under the modef ~N (Xg,V) is:-

L(B,V) = —{nlog(2m) + log|V| + (¥ = XB)TV (Y — Xp)} (17)
By substitution (13) in (17) we obtain the profibgy — likelihood for V:

Ly(V) = = {loglV]+ (¥ = XB)"V71(Y — XB) + nlog(2m)}

= —%{ logV| + YTV 1[I = X(XTV X )TIXTV1}Y] - 2log (2m) (18)

Penalized Spline as BLUPs

The penalized spline fitting criterion (6) ,whewidied bys? can then be written as( see[15]):

1 22
Z Y = X8 = Zull* + 5 jull? (19)
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Notice that this can be made to equal the BLURGah by treading the u as a set of random coeffisi with:

0.2
cov(u) = o2l , where? = =
Putting all of this together yields the mixed modsgdresentation of the regression spline

Y=XB+Zu+candf = XB + Zu

2
uy _ fogl 0
cov [e] =1 0521] (20)

Note that the fitted valuel can be rewritten as:
f=C(CTC+1D)"'c"Y (21)

Additive Models
Let the Model:-

Yi = 25-;0 ﬁ]X]l. + ml(XpH_i) + €,i = 1, e, n 220

We call (22) the additive models it has a parametdomponentZ’}’zoﬂjxﬁ and nonparametric
componentst; (X,1,)-

In this paper will get this additive modgl= Y7_; 8;X;; + m(Xp41;) +w(Xpi2:) + €

By using penalized spline of degregeto first nonparametric component awdio second nonparametric

component, get:

. K . K
Vi = Z?:O Bjxji + Z;?:l ﬁp+jx;];+1,i + quzl{uk(xp+1,i - kk)z- + Z}?:l ﬁp+q+jxrj;+1,i + stzl{ul(q+k(xp+1,i -
k)i + € (23)

Wheré,, ...,quandkl, .., kg are inner knota < k; <,,, < qu <banda <k; <,,,<kg, <b.

By using a convenient connection between penalggthes and mixed models. Model (23) is rewritten a
follows( see[6,8,9,13,15,16,17])

Y=XB+Zu+¢ (24)
Where
Bo
By U
V1 .Bp+1 ’VuK “
y=1|:i|, B= : LU= |y a
Yn Bp+q | K?-H
.Bp+q+1 l uKS J
-ﬁp+q+s-
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— a ... — a — s — s
(p+11 — k1) (Xp+1,1 qu)+ (xp+2,1 k)% (xp+2,1 kKs)+
,Z = : S : ) H " :
q q — S ... — S
(Xpr1n — k)i o Opyin — qu)+ (Xp+2n — k1) (Xp+2n kKs)+
q s
[T X1 o Xp1 Xpr1a o Xpy1n Xpizi o Xpioi|
q s
X = |1 Y12 o Xp2 Xpr1z e Xpypo Xp+22 o Xp+22
: P . J
[1 Xin o Xpn Xp+in - Xpiin Xp+zn = Xpizn

Assume thatu and ¢ are independent and normally distributed wasN(0,G), e~N(0,R), whereR =
diag(og,, ..., 0¢,) isan x n matrix andG = diag(oy,, ...,auKS)

The estimation of the paramet@sndu entails minimizing the penalized least squarggion

Y= XB— Zu|*> + 2 *u"Du; (25)

WhereD, is penalty matrix. For a given smoothing parametetrix D, the penalized least squares estimators

from (25)are :

(B)=Crx 25tn) Gy 2o

i Z'X Z'Z+D zZT

And the fitted values afe= X + Zoi = HY , whereH is the smoothingmatrix given by

- A ) g

WhereH is smoothing matrix.

CONCLUSIONS

We can representation additive model as mixed mbglelising a convenient connection between penalized

splines and mixed models.
REFERENCES

1. Claeskens, G., krivobokova, T. and Opsomer, J.DYP0Asymptotic properties of penalized splingidmetrika,
96,529-544.

2. deBoor, C. (1978) " Aproactical Guide to splitiepringer, New York.
3. Eubak, R.(1990) " Smoothing splines and nonpatigemegression " Marcel Dekker, New york.
4. Fan, J. and Gijbels, I. (1996) " Local polynommiaddeling and it's applications " Chapman and Halhdon.

5. Green, P. and silverman, B. (1994) " Nonparame#gression and generalized linear models " Chapamnal
Hall, London.

6. Hastie, T. and Tibshirani, R. (1990) " Generaliadditive models " Chapman and Hall, London.

7. Langs, K. (2010) " Numerical Analysis for stati#ins " second edition, springer.

| Index Copernicus Value: 3.0 - Articles can be senb editor@impactjournals.us




| Spline Additive Regression Models 9 |

10.

11.

12.

13.

14.

15.

16.

17.

Muslim, A. and Muhaisn, A. (2014) " Fuzzy sets qnahalized spline in Bayesian semiparametric regres's,
LAMBERT Academic Publishing.

Muslim, A. and Muhaisn, A. (2014) "Spline semipagdrt Regression Models regression ", Al Kufaunsitsr.

Motair, Hafed M. (2011) " A comparison of some parametric regression smoothing methods using sitioul

" M.Sc thesis, university of al-Qadisiyah, colleffecomputer sciences and mathematics.
Montgomery, D.,C. and Peck, E.,A. (1982) " Introiilon to linear regression analysis "John Wile$é&ns.

Natio, k. (2002) " Semiparametric regression withltiplicative adjustment " Communications in sfts,
Theory and methods 31 2289-2309.

Neter, J. and, Wasserman, W. (1974) " Appliedalingtatistical models, regression, analysis ofaver¢ and

experimental designs " Richard. D. IRWIN, INC.

Ruppert, D. Wand, M.P. and Carroll, R.J. (2008gMmiparametric regression ", Cambridge Universigss.
Tarmaratram, K. (2011) " Robust Estimation and ehosklection in Semiparametric regression models "
proefschriftvoorgedragen tot het behalen van dd gaam Doctor.

Yuan, A. and DE Gooijer, J. (2007) " Semiparametegression with kernel error model " Scandinaviaurnal

of statistics.

Wand, M.P. (2009) " Semiparametric regressiongraghical models " Aust, N.Z, J. Stat. 51(1), 9-41

Index Copernicus Value: 3.0 - Articles can be senb editor@impactjournals.us







